"Dirichlet series" meaning in All languages combined

See Dirichlet series on Wiktionary

Noun [English]

Forms: Dirichlet series [plural]
Etymology: Named after German mathematician Peter Gustav Lejeune Dirichlet. Etymology templates: {{named-after/list|mathematician||||}} mathematician, {{!}} |, {{lang|en|Peter Gustav Lejeune Dirichlet}} Peter Gustav Lejeune Dirichlet, {{named-after|en|Peter Gustav Lejeune Dirichlet|nationality=German|occupation=mathematician|wplink=Peter Gustav Lejeune Dirichlet}} Named after German mathematician Peter Gustav Lejeune Dirichlet Head templates: {{en-noun|~|Dirichlet series}} Dirichlet series (countable and uncountable, plural Dirichlet series)
  1. (number theory) Any infinite series of the form ∑ₙ₌₁ ᪲(a_n)/(nˢ), where s and each a_n are complex numbers. Wikipedia link: Dirichlet series Tags: countable, uncountable Categories (topical): Number theory Synonyms: Dirichlet's series Synonyms (infinite series): general Dirichlet series, ordinary Dirichlet series Related terms: Dirichlet L-series, Dirichlet function (english: unrelated concept), Dirichlet L-function, Riemann zeta function Translations (infinite series): serie di Dirichlet [feminine] (Italian)
{
  "etymology_templates": [
    {
      "args": {
        "1": "mathematician",
        "2": "",
        "3": "",
        "4": "",
        "5": ""
      },
      "expansion": "mathematician",
      "name": "named-after/list"
    },
    {
      "args": {},
      "expansion": "|",
      "name": "!"
    },
    {
      "args": {
        "1": "en",
        "2": "Peter Gustav Lejeune Dirichlet"
      },
      "expansion": "Peter Gustav Lejeune Dirichlet",
      "name": "lang"
    },
    {
      "args": {
        "1": "en",
        "2": "Peter Gustav Lejeune Dirichlet",
        "nationality": "German",
        "occupation": "mathematician",
        "wplink": "Peter Gustav Lejeune Dirichlet"
      },
      "expansion": "Named after German mathematician Peter Gustav Lejeune Dirichlet",
      "name": "named-after"
    }
  ],
  "etymology_text": "Named after German mathematician Peter Gustav Lejeune Dirichlet.",
  "forms": [
    {
      "form": "Dirichlet series",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {
        "1": "~",
        "2": "Dirichlet series"
      },
      "expansion": "Dirichlet series (countable and uncountable, plural Dirichlet series)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Entries with translation boxes",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Italian translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Number theory",
          "orig": "en:Number theory",
          "parents": [
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "examples": [
        {
          "ref": "2009, Anatoli Andrianov, Introduction to Siegel Modular Forms and Dirichlet Series, Springer (Birkhäuser), page 137:",
          "text": "Traditionally, starting from Euler, multiplicativity of arithmetic sequences is customarily expressed in the form of an Euler product factorization of the generating Dirichlet series. It turns out that in the situation of modular forms, suitable Dirichlet series constructed by Fourier coefficients of eigenfunctions of Hecke operators can be expressed through Dirichlet series formed by the corresponding eigenvalues.",
          "type": "quote"
        },
        {
          "ref": "2012, Daniel Bump, “Chapter 1: Introduction: Multiple Dirichlet Series”, in Daniel Bump, Solomon Friedberg, Dorian Goldfeld, editors, Multiple Dirichlet Series, L-functions and Automorphic Forms, Springer, page 6:",
          "text": "We have now given heuristically a large family of multiple Dirichlet series, one for each simply laced Dynkin diagram.",
          "type": "quote"
        },
        {
          "text": "2014, Marius Overholt, A Course in Analytic Number Theory, American Mathematical Society, page 157,\nThe sum\nA(s)=∑ₙ₌₁ ᪲a_nn⁻ˢ\nof a convergent Dirichlet series is a holomorphic (single-valued analytic) function in the half plane σ>σ_c(A), and the terms of the Dirichlet series are holomorphic in the whole complex plane, and the series converges uniformly on every compact subset of σ>σ_c(A) by Proposition 3.3."
        }
      ],
      "glosses": [
        "Any infinite series of the form ∑ₙ₌₁ ᪲(a_n)/(nˢ), where s and each a_n are complex numbers."
      ],
      "id": "en-Dirichlet_series-en-noun-b6jTVO-W",
      "links": [
        [
          "number theory",
          "number theory"
        ],
        [
          "infinite series",
          "infinite series"
        ],
        [
          "complex number",
          "complex number"
        ]
      ],
      "raw_glosses": [
        "(number theory) Any infinite series of the form ∑ₙ₌₁ ᪲(a_n)/(nˢ), where s and each a_n are complex numbers."
      ],
      "related": [
        {
          "word": "Dirichlet L-series"
        },
        {
          "english": "unrelated concept",
          "word": "Dirichlet function"
        },
        {
          "word": "Dirichlet L-function"
        },
        {
          "word": "Riemann zeta function"
        }
      ],
      "synonyms": [
        {
          "sense": "infinite series",
          "word": "general Dirichlet series"
        },
        {
          "sense": "infinite series",
          "word": "ordinary Dirichlet series"
        },
        {
          "word": "Dirichlet's series"
        }
      ],
      "tags": [
        "countable",
        "uncountable"
      ],
      "topics": [
        "mathematics",
        "number-theory",
        "sciences"
      ],
      "translations": [
        {
          "code": "it",
          "lang": "Italian",
          "sense": "infinite series",
          "tags": [
            "feminine"
          ],
          "word": "serie di Dirichlet"
        }
      ],
      "wikipedia": [
        "Dirichlet series"
      ]
    }
  ],
  "word": "Dirichlet series"
}
{
  "etymology_templates": [
    {
      "args": {
        "1": "mathematician",
        "2": "",
        "3": "",
        "4": "",
        "5": ""
      },
      "expansion": "mathematician",
      "name": "named-after/list"
    },
    {
      "args": {},
      "expansion": "|",
      "name": "!"
    },
    {
      "args": {
        "1": "en",
        "2": "Peter Gustav Lejeune Dirichlet"
      },
      "expansion": "Peter Gustav Lejeune Dirichlet",
      "name": "lang"
    },
    {
      "args": {
        "1": "en",
        "2": "Peter Gustav Lejeune Dirichlet",
        "nationality": "German",
        "occupation": "mathematician",
        "wplink": "Peter Gustav Lejeune Dirichlet"
      },
      "expansion": "Named after German mathematician Peter Gustav Lejeune Dirichlet",
      "name": "named-after"
    }
  ],
  "etymology_text": "Named after German mathematician Peter Gustav Lejeune Dirichlet.",
  "forms": [
    {
      "form": "Dirichlet series",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {
        "1": "~",
        "2": "Dirichlet series"
      },
      "expansion": "Dirichlet series (countable and uncountable, plural Dirichlet series)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "related": [
    {
      "word": "Dirichlet L-series"
    },
    {
      "english": "unrelated concept",
      "word": "Dirichlet function"
    },
    {
      "word": "Dirichlet L-function"
    },
    {
      "word": "Riemann zeta function"
    }
  ],
  "senses": [
    {
      "categories": [
        "English countable nouns",
        "English entries with incorrect language header",
        "English eponyms",
        "English lemmas",
        "English multiword terms",
        "English nouns",
        "English terms with quotations",
        "English uncountable nouns",
        "Entries with translation boxes",
        "Pages with 1 entry",
        "Pages with entries",
        "Terms with Italian translations",
        "en:Number theory"
      ],
      "examples": [
        {
          "ref": "2009, Anatoli Andrianov, Introduction to Siegel Modular Forms and Dirichlet Series, Springer (Birkhäuser), page 137:",
          "text": "Traditionally, starting from Euler, multiplicativity of arithmetic sequences is customarily expressed in the form of an Euler product factorization of the generating Dirichlet series. It turns out that in the situation of modular forms, suitable Dirichlet series constructed by Fourier coefficients of eigenfunctions of Hecke operators can be expressed through Dirichlet series formed by the corresponding eigenvalues.",
          "type": "quote"
        },
        {
          "ref": "2012, Daniel Bump, “Chapter 1: Introduction: Multiple Dirichlet Series”, in Daniel Bump, Solomon Friedberg, Dorian Goldfeld, editors, Multiple Dirichlet Series, L-functions and Automorphic Forms, Springer, page 6:",
          "text": "We have now given heuristically a large family of multiple Dirichlet series, one for each simply laced Dynkin diagram.",
          "type": "quote"
        },
        {
          "text": "2014, Marius Overholt, A Course in Analytic Number Theory, American Mathematical Society, page 157,\nThe sum\nA(s)=∑ₙ₌₁ ᪲a_nn⁻ˢ\nof a convergent Dirichlet series is a holomorphic (single-valued analytic) function in the half plane σ>σ_c(A), and the terms of the Dirichlet series are holomorphic in the whole complex plane, and the series converges uniformly on every compact subset of σ>σ_c(A) by Proposition 3.3."
        }
      ],
      "glosses": [
        "Any infinite series of the form ∑ₙ₌₁ ᪲(a_n)/(nˢ), where s and each a_n are complex numbers."
      ],
      "links": [
        [
          "number theory",
          "number theory"
        ],
        [
          "infinite series",
          "infinite series"
        ],
        [
          "complex number",
          "complex number"
        ]
      ],
      "raw_glosses": [
        "(number theory) Any infinite series of the form ∑ₙ₌₁ ᪲(a_n)/(nˢ), where s and each a_n are complex numbers."
      ],
      "tags": [
        "countable",
        "uncountable"
      ],
      "topics": [
        "mathematics",
        "number-theory",
        "sciences"
      ],
      "wikipedia": [
        "Dirichlet series"
      ]
    }
  ],
  "synonyms": [
    {
      "sense": "infinite series",
      "word": "general Dirichlet series"
    },
    {
      "sense": "infinite series",
      "word": "ordinary Dirichlet series"
    },
    {
      "word": "Dirichlet's series"
    }
  ],
  "translations": [
    {
      "code": "it",
      "lang": "Italian",
      "sense": "infinite series",
      "tags": [
        "feminine"
      ],
      "word": "serie di Dirichlet"
    }
  ],
  "word": "Dirichlet series"
}

Download raw JSONL data for Dirichlet series meaning in All languages combined (3.7kB)


This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2025-01-23 from the enwiktionary dump dated 2025-01-20 using wiktextract (0c0c1f1 and 4230888). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.